Adaptive Hedge

Wouter M. Koolen

SUMMARY

AdaHedge is a new online learning algorithm that adapts to the difficulty of the data

Difficulty

Regret

Worst-case data $O(\sqrt{L_T^* \ln(K)})$

Easy data

constant: O(K)

Key Ideas

- Bounds on the *mixability gap* (see top-right panel) play a crucial role in previous analyses of the Hedge algorithm.
- We only bound the mixability gap in the analysis, but not in the algorithm!
- On easy data, the probabilities output by Hedge converge on a single action. In this case we improve the standard bounds.
- Example: if one action is always better than all others.

ONLINE LEARNING SETTING

Decision Theoretic Online Learning

In rounds $t = 1, \dots, T$:

- 1. Assign probabilities $\boldsymbol{w}_t = (w_t^1, \dots, w_t^K)$ to K actions
- 2. Actions get losses $\ell_t \in [0,1]^K$
- 3. Our loss: $w_t \cdot \ell_t$

Aim to minimize the *regret*

$$R(T) = \sum_{t=1}^{T} \boldsymbol{w}_t \cdot \boldsymbol{\ell}_t - L_T^*,$$

where $L_T^* = \min_k \sum_{t=1}^T \ell_t^k$ is the loss of the best action in hindsight.

HEDGE

• Hedge predicts with exponential weights:

$$w_t^k \propto \exp\left(-\eta \sum_{s=1}^{t-1} \ell_s^k\right).$$

• Its performance depends strongly on the learning rate $\eta > 0$.

MIXABILITY GAP

The mixability gap is

$$\delta_t(\eta) = \boldsymbol{w}_t \cdot \boldsymbol{\ell}_t - \left(-\frac{1}{\eta} \ln(\boldsymbol{w}_t \cdot e^{-\eta \boldsymbol{\ell}_t})\right).$$

- In Prediction with Expert Advice terms: $\delta_t(\eta)$ measures the difference with a mixable loss function.
- In Bayesian terms: $\delta_t(\eta)$ measures the difference between randomizing according to the posterior and mixing according to the posterior.

ADAHEDGE

- Tune η optimally for a budget $b(\eta)$ on the cumulative mixability gap $\Delta_T(\eta) = \sum_{t=1}^T \delta_t(\eta)$
- Increase the budget using the doubling trick.

Algorithm

- 1. Start with $\eta = 1$
- 2. Run a new instance of Hedge with learning rate η until $\Delta_T(\eta)$ exceeds budget

$$b(\eta) = \left(\frac{1}{\eta} + \frac{1}{e-1}\right) \ln(K).$$

3. Set $\eta \leftarrow \eta/2$ and goto 2.

THEORETICAL RESULTS

AdaHedge is worst-case optimal...

Theorem 1 The regret of AdaHedge is bounded by

$$R(T) \le 5.1 \sqrt{L_T^* \ln(K)} + O\left(\ln(L_T^* + 2) \ln(K)\right).$$

...and has strong theoretical guarantees on 'easy' data

Theorem 2 Suppose the loss vectors ℓ_t are independent random variables and there exists a k^* such that

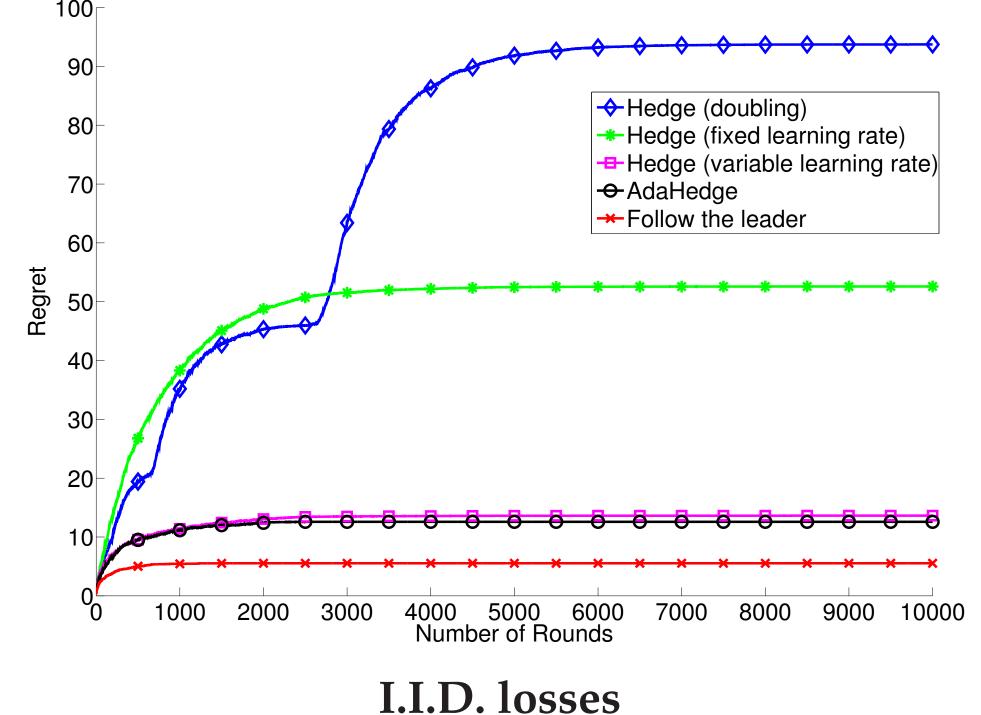
$$\min_{k \neq k^*} \mathbb{E}[\ell_t^k - \ell_t^{k^*}] > 0 \quad \text{for all } t \in \mathbb{Z}^+.$$

Then with probability at least $1-\delta$ the regret of Ada-Hedge is bounded by a constant:

$$R(T) = O(K + \log(1/\delta)).$$

EXPERIMENTS

Simulation Study on 'Easy' Data



+-Hedge (fixed learning rate) Hedge (variable learning rate) - AdaHedge Follow the leader 6000 Number of Rounds

Correlated losses

AdaHedge has excellent practical performance

N.B. Follow-the-leader does very well here, but gets *linear* regret $\geq T/2-1$ in the worst case!

PROOF TECHNIQUES

Everyone bounds the mixability gap δ_t .

Standard Analysis

• Optimize η after bounding $\delta_t(\eta) \leq \eta/8$.

Our Approach

- Optimize η before bounding!
- If the posterior probabilities w_t converge on a single action, the mixability gap goes to 0!

$$\delta_t(\eta) \le (e-2)\eta \left(1 - \max_k w_t^k\right) \qquad (0 < \eta \le 1)$$

CURRENT WORK

Avoid the Doubling Trick

- Better performance in practice
- Still very clean analysis
- Improved the worst-case bound to

$$R(T) \le 2\sqrt{\frac{L_T^*(T - L_T^*)}{T}\ln(K) + \frac{8}{3}\ln(K) + 2.}$$

Weaker Conditions for Easy Data

 Guarantee regret bounded by the best regret of AdaHedge and Follow-the-Leader, up to a small constant factor.

FUNDING

PASCAL2 Network of Excellence grant IST-2007-216886 and NWO Rubicon grant 680-50-1010